Michigan
IaC-Eval: A Code Generation Benchmark for Cloud Infrastructure-as-Code Programs, Xinyu Wang University of Michigan
Infrastructure-as-Code (IaC), an important component of cloud computing, allows the definition of cloud infrastructure in high-level programs. However, developing IaC programs is challenging, complicated by factors that include the burgeoning complexity of the cloud ecosystem (e.g., diversity of cloud services and workloads), and the relative scarcity of IaC-specific code examples and public repositories. While large language models (LLMs) have shown promise in general code generation and could potentially aid in IaC development, no benchmarks currently exist for evaluating their ability to generate IaC code.
CONTRAST: Continual Multi-source Adaptation to Dynamic Distributions
Adapting to dynamic data distributions is a practical yet challenging task. One effective strategy is to use a model ensemble, which leverages the diverse expertise of different models to transfer knowledge to evolving data distributions. However, this approach faces difficulties when the dynamic test distribution is available only in small batches and without access to the original source data. To address the challenge of adapting to dynamic distributions in such practical settings, we propose CONtinual mulTi-souRce Adaptation to dynamic diStribuTions (CONTRAST), a novel method that optimally combines multiple source models to adapt to the dynamic test data. CONTRAST has two distinguishing features. First, it efficiently computes the optimal combination weights to combine the source models to adapt to the test data distribution continuously as a function of time. Second, it identifies which of the source model parameters to update so that only the model which is most correlated to the target data is adapted, leaving the less correlated ones untouched; this mitigates the issue of "forgetting" the source model parameters by focusing only on the source model that exhibits the strongest correlation with the test batch distribution. Through theoretical analysis we show that the proposed method is able to optimally combine the source models and prioritize updates to the model least prone to forgetting. Experimental analysis on diverse datasets demonstrates that the combination of multiple source models does at least as well as the best source (with hindsight knowledge), and performance does not degrade as the test data distribution changes over time (robust to forgetting).
Phased Exploration with Greedy Exploitation in Stochastic Combinatorial Partial Monitoring Games
Sougata Chaudhuri, Ambuj Tewari
Partial monitoring games are repeated games where the learner receives feedback that might be different from adversary's move or even the reward gained by the learner. Recently, a general model of combinatorial partial monitoring (CPM) games was proposed [1], where the learner's action space can be exponentially large and adversary samples its moves from a bounded, continuous space, according to a fixed distribution.
RoME: A Robust Mixed-Effects Bandit Algorithm for Optimizing Mobile Health Interventions
Mobile health leverages personalized and contextually tailored interventions optimized through bandit and reinforcement learning algorithms. In practice, however, challenges such as participant heterogeneity, nonstationarity, and nonlinear relationships hinder algorithm performance. We propose RoME, a Robust Mixed-Effects contextual bandit algorithm that simultaneously addresses these challenges via (1) modeling the differential reward with user-and time-specific random effects, (2) network cohesion penalties, and (3) debiased machine learning for flexible estimation of baseline rewards. We establish a high-probability regret bound that depends solely on the dimension of the differential-reward model, enabling us to achieve robust regret bounds even when the baseline reward is highly complex. We demonstrate the superior performance of the RoME algorithm in a simulation and two off-policy evaluation studies.
Learning What and Where to Draw
Scott E. Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee
Generative Adversarial Networks (GANs) have recently demonstrated the capability to synthesize compelling real-world images, such as room interiors, album covers, manga, faces, birds, and flowers. While existing models can synthesize images based on global constraints such as a class label or caption, they do not provide control over pose or object location. We propose a new model, the Generative Adversarial What-Where Network (GAWWN), that synthesizes images given instructions describing what content to draw in which location. We show high-quality 128 128 image synthesis on the Caltech-UCSD Birds dataset, conditioned on both informal text descriptions and also object location. Our system exposes control over both the bounding box around the bird and its constituent parts. By modeling the conditional distributions over part locations, our system also enables conditioning on arbitrary subsets of parts (e.g.
Crafting Interpretable Embeddings for Language Neuroscience by Asking LLMs Questions
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks. However, their opaqueness and proliferation into scientific domains such as neuroscience have created a growing need for interpretability. Here, we ask whether we can obtain interpretable embeddings through LLM prompting. We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM. Training QA-Emb reduces to selecting a set of underlying questions rather than learning model weights. We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli. QA-Emb significantly outperforms an established interpretable baseline, and does so while requiring very few questions. This paves the way towards building flexible feature spaces that can concretize and evaluate our understanding of semantic brain representations. We additionally find that QA-Emb can be effectively approximated with an efficient model, and we explore broader applications in simple NLP tasks.
Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning
Harsh Gupta, R. Srikant, Lei Ying
We study two time-scale linear stochastic approximation algorithms, which can be used to model well-known reinforcement learning algorithms such as GTD, GTD2, and TDC. We present finite-time performance bounds for the case where the learning rate is fixed. The key idea in obtaining these bounds is to use a Lyapunov function motivated by singular perturbation theory for linear differential equations. We use the bound to design an adaptive learning rate scheme which significantly improves the convergence rate over the known optimal polynomial decay rule in our experiments, and can be used to potentially improve the performance of any other schedule where the learning rate is changed at pre-determined time instants.
Hardness of Online Sleeping Combinatorial Optimization Problems
Satyen Kale, Chansoo Lee, David Pal
We show that several online combinatorial optimization problems that admit efficient no-regret algorithms become computationally hard in the sleeping setting where a subset of actions becomes unavailable in each round. Specifically, we show that the sleeping versions of these problems are at least as hard as PAC learning DNF expressions, a long standing open problem.
Consistency Purification: Effective and Efficient Diffusion Purification towards Certified Robustness
Diffusion Purification, purifying noised images with diffusion models, has been widely used for enhancing certified robustness via randomized smoothing. However, existing frameworks often grapple with the balance between efficiency and effectiveness. While the Denoising Diffusion Probabilistic Model (DDPM) offers an efficient single-step purification, it falls short in ensuring purified images reside on the data manifold. Conversely, the Stochastic Diffusion Model effectively places purified images on the data manifold but demands solving cumbersome stochastic differential equations, while its derivative, the Probability Flow Ordinary Differential Equation (PF-ODE), though solving simpler ordinary differential equations, still requires multiple computational steps. In this work, we demonstrated that an ideal purification pipeline should generate the purified images on the data manifold that are as much semantically aligned to the original images for effectiveness in one step for efficiency. Therefore, we introduced Consistency Purification, an efficiency-effectiveness Pareto superior purifier compared to the previous work.
Hypothesis Testing the Circuit Hypothesis in LLMs Claudia Shi 1 Nicolas Beltran-Velez 1 Carolina Zheng
Large language models (LLMs) demonstrate surprising capabilities, but we do not understand how they are implemented. One hypothesis suggests that these capabilities are primarily executed by small subnetworks within the LLM, known as circuits. But how can we evaluate this hypothesis? In this paper, we formalize a set of criteria that a circuit is hypothesized to meet and develop a suite of hypothesis tests to evaluate how well circuits satisfy them. The criteria focus on the extent to which the LLM's behavior is preserved, the degree of localization of this behavior, and whether the circuit is minimal. We apply these tests to six circuits described in the research literature. We find that synthetic circuits - circuits that are hard-coded in the model - align with the idealized properties. Circuits discovered in Transformer models satisfy the criteria to varying degrees. To facilitate future empirical studies of circuits, we created the circuitry package, a wrapper around the TransformerLens library, which abstracts away lower-level manipulations of hooks and activations.